2D FETs with MoS₂, WSe₂, and black phosphorous toward practical electronics

Seongil Im

E-mail: <u>semicon@yonsei.ac.kr</u> Lab. Website: Http://edlab.yonsei.ac.kr

Introduction

The most widely studied 2-D material **Conical Dirac** spectrum Energy states without a bandgap High mobility (< 100000cm²/Vs) More conductive than copper Attractive optical phenomena

More Flexible than rubber Stretchable material Stronger than diamond Various formation (ribbon, tube, ball...)

K. S. Kim *Nature* **457**, 706 (2009)

K. S. Novoselov et al. Science 306, 666 (2004)

Limitation of Graphene

Gapless Band Structure → Unsuitable for switching devices

Transition Metal Dichalcogenides

Transition Metal Dichalcogenides (MX₂)

Similar storyline of the graphene family 2D and layered (thin-film) structures Covalently bonded X-M-X held together by Van der Waals interactic... Broken symmetry in atomic basis

→ can make **Band Gap** of ~ 1 eV

M. Chhowala et al. Nature Chem. 5, 263 (2013)

	-S ₂	-Se ₂	-Te ₂	
Nb	Metal	Metal	Metal	
Ta	Metal	Metal	Metal	
Мо	Semiconducting (1L : 1.8eV, Bulk : 1.2eV)	Semiconducting (1L : 1.5eV, Bulk : 1.1eV)	Semiconducting (1L : 1.1eV, Bulk : 1.0eV)	
W	Semiconducting (1L : 1.9eV, Bulk : 1.4eV)	Semiconducting (1L : 1.7eV, Bulk : 1.2eV)	Semiconducting (1L:1.1eV)	
	modified version of Q. H. Wang et al. Nature Nanotech. 7, 699 (20			

Recent Progress on 2D Nanosheet

in World Researches

FET –countless many reports (e.g. A. Kis in Nat Nano. 2011)

- 1. Field-Effect Transistors Built from All Two-Dimensional Material Components, ACS Nano, 8, 6259 (2014)
- 2. Impact of Contact on the Operation and Performance of Back-Gated Monolayer MoS₂ Field-Effect-Transistors, ACS Nano, 9, 7904 (2015)
- Highly Stable, Dual-Gated MoS₂ Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage, ACS Nano, 9, 7019 (2015)

CMOS-several reports

- 1. High gain, low noise, fully complementary logic inverter based on bi-layer WSe₂ field effect transistors, *Appl. Phys. Lett.*, **105**, 083511 (2014)
- 2. High Gain Inverters Based on WSe₂ Complementary Field-Effect Transistors, ACS Nano, 8, 4948 (2014)
- 3. High-Performance WSe₂ Complementary Metal Oxide Semiconductor Technology and Integrated Circuits, *Nano Letters*, 15, 4928 (2015)

pn diode-several reports

- 1. Dual-Gated MoS₂/WSe₂ van der Waals Tunnel Diodes and Transistors, ACS Nano, 9, 2071 (2015)
- 2. Black Phosphorus–Monolayer MoS₂ van der Waals Heterojunction p–n Diode, ACS Nano, 8, 8292 (2014)
- 3. Epitaxial growth of a monolayer WSe₂-MoS₂ lateral p-n junction with an atomically sharp interface, Science, 249, 524 (2015)
- 4. Vertical Heterostructure of Two-Dimensional MoS₂ and WSe₂ with Vertically Aligned Layers, *Nano Letters*, **15**, 1031 (2015)
- 5. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions, Nat. Nanotechnol., 9, 1024 (2014)

Outline Introduction : Outline and Motivation Progress on 2D Nanosheets in World Researches Progress on 2D Nanosheets in our Lab Top-gate MoS₂ FET, Nonvolatile Memory FETs and P-N diode 2D-2D, 2D-1D, 2D-Organic Hybrid Complementary Inverter **Black Phosphorous Dual Gate FETs** NiOx-MoS₂ van der Waals junction MESFET

Summary

Photo-Excited Charge Collection Spectroscopy

Recent Progress on 2D Nanosheet (IM)

1.Nanosheet Band-Gap & Thickness Modulation

MoS₂ Nanosheet Phototransistors with Thickness-modulated Optical Energy Gap, *Nano Lett.* (2012)

2. Nanosheet-Dielectric Interface Trap

Trap density probing on top-gate MoS₂ Nanosheet fieldeffect transistors by photo-excited charge collection spectroscopy, *Nanoscale* (2015)

Number	Trap density (X10 ¹² cm ⁻²) obtained from				
of MoS ₂ layer	Hystere- sis	PECCS	Hysteresis & PECCS	SS	
2	1.92	1.00	2.92	6.67	
3	1.26	1.15	2.41	7.10	
4	2.47	1.37	3.84	7.69	

Recent Progress on 2D Nanosheet (IM)

3. Nonvolatile Memory FETs

4. 2D-2D van der Waals p-n diode

Enhanced device performance of WSe_2-MoS_2 van der Waals junction p-n diode by fluoropolymer encapsulation, *JMC C* (2015)

2D-2D, 2D-1D, 2D-Organic Hybrid Complementary Inverter

P. J. Jeon et al. ACS Appl. Mater. Interfaces, DOI: 10.1021/acsami.5b06027 (2015)
S. H. Hosseini Shokouh et al., Adv. Mater. 2015, 27, 150 (2015)
H.S. Lee et al. Small, 11, 2132 (2015)

Fabrication : Direct Imprinting Method

2D p-WSe₂ and n-MoS₂ FETs on Wafer

Complementary Inverter on Wafer

Complementary inverter

VTC

2D p-WSe₂ and n-MoS₂ FETs on Glass

Fluoropolymer CYTOP

- 50 nm-thin Al₂O₃ (ALD)/Patterned gate on glass substrate

- : Low operation voltage of V_G =-5 ~ +5 V
- : Low gate-source leakage current of <100 fA
- Fluoropolymer CYTOP encapsulation (C-F bond-induced dipoles)
- : Induced more hole carriers into thin $p-WSe_2$ (positive V_{TH} shift)
- : **Reduced electrons** in thin n-MoS₂ (reduced on-current).

Complementary Inverter on Glass

Pass Transistor Logic Gates

2D-1D Hybrid Complementary Inverter

Voltage gain of 60 and subnanowatt power consumption at static states Highest gain and lowest power consumption for reported 2D material based inverter

S. H. Hosseini Shokouh et al., Adv. Mater. 2015, 27, 150 (2015)

2D-Organic Hybrid Complementary Inverter

Dual gate black phosphorous field effect transistors on glass for NOR logic and organic light emitting diode switching

J. S. Kim et al. Nanoletters, 15, 5778, (2015)

Images and Raman spectra

I-V Characteristics of Dual gate FET

Dynamic OLED Switching

Dynamic OLED Switching

NiO_x-MoS₂ metal-semiconductor field-effect transistor for high mobility and photoswitching speed

Structure of MoS₂ MESFET

"Thermally evaporated NiO_x is known to have quite a deep work function of more than 5.1~5.2 eV as a Ni-rich semi-transparent conducting oxide (x~0.9)."

NiO_x van der Waals Schottky Interface

for the thinner MoS₂

- The higher Schottky barrier height for the thinner MoS₂
- $-q\phi_B = q\phi_{NiOx} qX_{MoS2}$

4-Probe Hall Measurement

MESFET vs. MISFET

Saturation behavior in MESFET

: easier channel-depletion (pinch-off) in drain side

MESFET vs. MISFET

"The carrier transport in MESFET may hardly be interfered by insulator-semiconductor interface traps or an on-state gate field."

Parameters	MESFET	MISFET	
Subthreshold swing	83 mV/dec	200 mV/dec	
Mobility	950 cm²/V s	13 cm²/V s	
Hysteresis	0.06 V	8.56 V	
Threshold voltage	-1 V	-25 V	

Photo-detecting properties & Dynamic

Summary

2D-FETs

analysis MoS₂ band gap, nonvolatile memory, p-n diode

- Hybrid complimentary Inverter: nW power, high gain 2D-2D, 2D-1D, 2D-Organic
- Black Phosphorous Dual Gate FETs: High current, NOR gate TG BG bipolar transition voltage shifts, OLED switching
- NiOx-MoS₂ van der Waals junction MESFET: Intrinsic high mobility and photo-switching speed

IM's group activity on 2D Devices

FET

- 1. MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap, Nano Letters, 12, 3695 (2012)
- 2. MoS₂ nanosheets for top-gate nonvolatile memory transistor channel, Small, 20, 3111 (2012)
- 3. Nanosheet thickness-modulated MoS₂ dielectric property evidenced by field-effect transistor performance, *Nanoscale*, 5, 548 (2013)
- 4. Direct imprint of MoS₂ flakes on the patterned gate for nanosheet transistors, Journal of Materials Chemistry C, 1, 7803, (2013)
- 5. Graphene versus ohmic metal as source-drain electrode for MoS₂ nanosheet transistor channel, Small, 10, 2356, (2014)
- 6. Trap density probing on top-gate MoS₂ nanosheet field-effect transistors by photo-excited charge collection spectroscopy *Nanoscale*, **7**, 5617 (2015)
- Metal Semiconductor Field-Effect Transistor with MoS2/Conducting NiOx van der Waals Schottky Interface for Intrinsic High Mobility and Photoswitching Speed, ACS Nano, 9, 8312, (2015)
- 8. Dual Gate Black Phosphorus Field Effect Transistors on Glass for NOR Logic and Organic Light Emitting Diode Switching, *Nano letters*, **15**, 5778, (2015)
- 9. High Performance Air Stable Top-gate p-channel WSe₂ Field Effect Transistor with Fluoropolymer Buffer Layer, *Adv. Funct. Mater.,* DOI: 10.1002/adfm.201502008, (2015)

Im's group activity toward 2D semi.

Hybrid (Complimentary) Inverter

- 10. Molybdenum disulfide nanoflake-zinc oxide nanowire hybrid photoinverter, ACS Nano, 8, 5174 (2014)
- 11. Top and back gate molybdenum disulfide transistors coupled for logic and photo-inverter operation, *Journal of Materials Chemistry C*, **2**, 6023, (2014)
- 12. High-gain subnanowatt power consumption hybrid complementary logic inverter with WSe₂ nanosheet and ZnO nanowire transistors on glass *Advanced Materials*, **27**, 150 (2015)
- 13. Few layer MoS₂-organic thin film hybrid complementary inverter pixel fabricated on glass substrate *Small*, **11**, 2132 (2015)
- 14. Low Power Consumption Complementary Inverters with n-MoS2 and p-WSe2 Dichalcogenide Nanosheets on Glass for Logic and Light-Emitting Diode Circuits, *ACS Appl. Mater. Interfaces,* DOI: 10.1021/acsami.5b06027, (2015)

P-N and Schottky Diode

- 15. Multifunctional Schottky-diode circuit comprising palladium/molybdenum disulfide nanosheet, Small, 10, 23, (2014)
- 16. Enhanced device performances of WSe₂–MoS₂ van der Waals junction p–n diode by fluoropolymer encapsulation *Journal of Materials Chemistry C*, 3, 2751, (2015)

Memory FET

- 17. MoS₂ nanosheet channel and guanine DNA-base charge injection layer for high performance memory transistors *Journal of Materials Chemistry C*, **2**, 5411, (2014)
- 18. Nonvolatile Ferroelectric Memory Circuit Using Black Phosphorous Nanosheet-based Field Effect Transistors with P (VDF-TrFE) Polymer, *ACS Nano*, DOI: 10.1021/acsnano.5b04592, (2015)

Collaboration Groups & Acknowledgment

Acknowledgement

- National Research Foundation of Korea National Research Laboratory: 2014R1A2A1A01004815, Nano-Materials Technology Development: 2012M3A7B4034985) Yonsei University
 - Future-leading Research Initiative of 2014: 2014-22-0168
- Brain Korea 21 plus

Collaboration Groups

- LG Display & Samsung Display
- Dr. Won-Kook Choi (KIST Optoelectronic Materials and Devices Post-Silicon Semiconductor)
- **Prof.** Takhee Lee (Seoul National Univ. Dept. of Physics and Astronomy)
- Prof. Myung Mo Sung (Hanyang Univ. Dept. of Chemistry)
- Prof. Jae Hoon Kim, Hyoung Joon Choi, Yeonjin Yi (Yonsei Univ. Dept. of Physics)
- Prof. Hyungjun Kim, Jong-Hyun Ahn (Yonsei Univ. Dept. EE)

Notional Pasearc Foundation ... f Korea

SAMSUNG DISPLAY

Korea Institute o

Thank you for listening

E-mail: <u>semicon@yonsei.ac.kr</u> Lab. Website: Http://edlab.yonsei.ac.kr